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Core Solutions in Vector-Valued Games1
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Abstract. In this paper, we analyze core solution concepts for vector-
valued cooperative games. In these games, the worth of a coalition is
given by a vector rather than by a scalar. Thus, the classical concepts
in cooperative game theory have to be revisited and redefined; the
important principles of individual and collective rationality must be
accommodated; moreover, the sense given to the domination relation-
ship gives rise to two different theories. Although different, we show
the areas which they share. This analysis permits us to propose a com-
mon solution concept that is analogous to the core for scalar cooperat-
ive games.
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1. Introduction

Nowadays, the theory of games with vector-valued payoffs has experi-
enced an important development. Since the seminal papers by Blackwell
(Ref. 1) and Shapley (Ref. 2), many papers have been published in both
noncooperative and cooperative theories.

The vector-valued cooperative game theory is a realistic way to model
conflict situations because it incorporates into the analysis all the criteria
that should be considered in the problem. Most of the times, the agents
involved in decision-making models must consider simultaneously several
aspects in the negotiation and these aspects cannot be isolated. Cooperative
vector-valued games arise naturally when modeling cooperation between
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agents that consider simultaneously different aspects in the negotiation. For
example, distribution companies such as TV networks and cell-phone net-
works face this type of decision when they want to enter a new market.
These companies have to combine at least two aspects in the negotiation:
profit in the short run and coverage of the market, to improve their pos-
itions in the medium and long run. Analyzing each aspect of the negotiation
separately may lead to unresolved situations: one may agree to some aspects
of cooperation but disagree to others.

There is another important reason to deal with vector-valued games.
Any model with scalar payoffs has its immediate counterpart as soon as
uncertainty in the estimation of such payoff is considered. This approach
gives rise to the scenario analysis. In a scenario analysis, we are given several
instances of the payoff function, each representing an admissible realization
of our true function. No probabilistic assumptions are known about these
functions (scenarios), and the question is to search for compromise solutions
that are good simultaneously in all of the scenarios where the problem can
occur.

Example 1.1. Consider three cell-phone operators (namely O1, O2,
and O3) that want to enter a new market. There are two criteria that must
be considered in the process. On the one hand, there is the profit that has
been estimated from the market analysis. On the other hand, there is the
coverage, which is regulated by law. Thus, the percentage of population
covered by each operator or by merging is fixed by the government. Cover-
age is very important because it is known to improve the return in the
medium and long run. Let us assume that profit is measured in millions of
dollars and coverage in percent. We represent by vectors with two entries
the values obtained by each operator: the first entry is the profit and the
second one is the coverage. Let us consider the following data that represent
the values obtained in different cooperation situations:

S {O1} {O2} {O3} {O1, O2} {O1, O3} {O2, O3} {O1, O2, O3}

û(S ) �220� �340� �410� �670� �630� �11

40� �12

100� .

It is clear that we cannot analyze separately the profit game and the
coverage game. For the profit game, the core is empty. On the other hand,
for the coverage game, clearly yG(30, 40, 30) is a core allocation. Therefore,
it is not easy to answer the question of whether the operators should cooper-
ate to enter the market. �
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It is clear that there exists a need to develop a unified theory to help in
this analysis and to fill in the existing gap. When dealing with several cri-
teria, in the classical analysis one may try two different strategies: (i) separ-
ation of a game into its component games; (ii) combination of the criteria
into a utility function by means of a vector of weights λ . It is clear that the
first approach is too simplistic and results in the loss of insight in these
games; see for instance the previous example. On the other hand, several
authors have suggested converting vector-valued games into weighted scalar
games; see Refs. 1 and 3–5. In Refs. 1, 3, 4, the weights represent a distri-
bution of probability on the criteria; consequently, the weighted payoff rep-
resents the expected payoff. In Ref. 5, there is another interpretation of
weights as tradeoffs between the criteria.

Now, we consider the class of vector-valued transferable utility games
(TU games), that is, vector-valued games where the players accept side pay-
ments. We analyze this class of games from a multicriteria perspective. Simi-
lar analyses for noncooperative games have been considered also in Refs. 6–
9. In this paper, we extend the classical individual and collective rationality
principles using two different orderings in the payoff space. The first one
corresponds to a compromise attitude toward negotiation where coalitions
admit payoffs that are not worse in all the components than what they can
ensure by themselves. The second one is a more restrictive ordering which
accepts only payoffs that get more in all of the components.

Partial approaches to these two analyses have been done in Refs. 5 and
10 and an application can be seen in Ref. 11. Although it seems that these
two approaches lead to two different theories, we show that they share a
common solution concept, which we recommend as solution for this family
of games: the set of nondominated imputations by allocations (NDIA). The
main properties of NDIA are studied and its relationship with the classical
concept of core is shown.

The paper is organized as follows. In Section 2, we introduce the defi-
nition of vector-valued cooperative game and the concept of allocation for
these games. Moreover, we analyze two different domination relationships
that extend the classic domination concept in the scalar case. Section 3 ana-
lyzes the solution concepts for vector-valued cooperative games using a
compromise ordering: players accept side payments that are not worse com-
ponentwise than their guarantee payoffs. Section 4 studies the solution con-
cepts under strong ordering. In this case, the players accept side payments
provided that they get more in all of the components of their payoff func-
tions. Finally, in the conclusions (Section 5), we recommend a common
solution concept valid for the two types of analysis of vector-valued cooper-
ative games.



JOTA: VOL. 112, NO. 2, FEBRUARY 2002334

2. Basic Concepts

A vector-valued cooperative game (N, û) is a set of players NG

{1, 2, . . . , n} and a map û: N ∪ ∅ →�m, such that û(∅ )G0, that gives the
worth of each coalition by means of different criteria. The elements of the
set N are called players and the function û is the characteristic function of
the game. A subset S of the player set is called a coalition and û(s) is the
worth of coalition S in the game. We denote by G û the family of all the
vector-valued cooperative games and by gû the family of all the scalar coop-
erative games.

If a vector-valued game is played and if all the players in N decide to
cooperate, then an interesting question which arises is how the vector û(N )
should be allocated among the various players.

It is worth noting that this is the same situation which appears in scalar
cooperative games, where the worth of û(N ) ∈ � has to be allocated among
the players.

The natural extension of the idea of allocation used in scalar games to
vector-valued games consists of using a payoff matrix (an element of �mBn),
whose rows are allocations of the criteria. Since the payoffs are vectors, the
allocations in these games are matrices with m rows (criteria) and n columns
(players),

XG�
x1

1 x2
1 . . . xn

1

x1
2 x2

2 . . . xn
2

··· ···
· · · ···

x1
m x2

m . . . xn
m

� .

The i th column Xi in the matrix X represents the payoffs of the i th player
for each criteria; therefore,

XiG(xi
1 , x

i
2 , . . . , x

i
m)t

are the payoffs for player i. The j th row Xj in the matrix X is an allocation
among the players of the total amount obtained in each criteria;

XjG(x1
j , x

2
j , . . . , x

n
j)

are the payoffs corresponding to criteria j for each player. The sum

XSG ∑
i ∈ S

Xi

is the overall payoff obtained by coalition S. The set of allocations of a
game (N, û) is denoted by I*(N, û).

Among all the allocations of the game (N, û) ∈ G û, we are interested in
those which cannot be beaten by the worth given to the coalitions. In scalar
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games, to beat an allocation with respect to a coalition means to find
another allocation which gives more worth to the members of that coalition
(equivalently, which gives no less worth). Nevertheless, in vector-valued
games, to get more worth is not equivalent to not to get less worth.

These two ways of analyzing the situation correspond to two different
solution concepts for these games. In the first one, we do not admit less
worth componentwise than what we can guarantee already to ourselves.
This would lead us to get more. In the second one, we accept compromise
payoffs which get worse in some of the criteria, provided that we increase
payoffs in some others.

In the following example, we show allocations which fulfill each one of
the above mentioned requirements.

Example 2.1. Consider a three players game NG{1, 2, 3}̧ and two
objectives. The payoffs that each player or coalition can obtain by itself are
the following:

S {P1} {P2} {P3} {P1, P2} {P1, P3} {P2, P3} {P1, P2, P3}

û(S ) �22� �34� �41� �67� �63� �11

4 � �12

10� .

In this example, the matrix

XG�3 4 5

3 5 2�
is an allocation of 12 and 10 in which each player obtains for each criteria
at least the payoff that he can ensure for himself [we denote this by Â ]:

X1G(3, 3)tÂû({1}),

X2G(4, 5)tÂû({2}),

X3G(5, 2)tÂû({3})],

and also the matrix X collectively allocates among each coalition more than
what each one of them can guarantee for themselves:

X {1,2}G(7, 8)tÂû({1, 2}),

X {1,3}G(8, 5)tÂû({1, 3}),

X {2,3}G(9, 7)tÂû({2, 3}).
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However, the matrix

YG�3 5 4

3 3 4�
is another allocation of (12, 10), so that none of the players would refuse it
because it is not worse than what they could attain for themselves. In this
case, the payoffs for player 2 and for coalition SG{1, 2} are not better than
the worth they receive by the characteristic function

Y2G(5, 3)tÂ� û({2}),

Y {1,2}G(8, 6)tÂ� û({1, 2}). �

Our previous discussion has shown that at least two different orderings
are possible in the set of allocations in vector-valued games. One of them is
a complete binary relation, although it is not transitive: an allocation a is
not worse than another allocation b if a gets more worth than b in at least
one criterion. The second one is a partial order: an allocation a is preferred
to another allocation b if a gets more worth than b in all the criteria.

If we denote by �m
Â the nonnegative orthant of the m-dimensional real

space �m, it is straightforward to see that a is not worse than b if and only
if there exists λ ∈Λ m

Â such that

λtaHλtb

and a gets more worth than b in all the criteria if and only if

λ taÂλ tb, for all λ ∈Λ m
Â ,

where (see Ref. 12)

Λm
ÂG�λ ∈ �m

Â : ∑
m

jG1

λ jG1� .

Notice that λj can be seen as the importance or weight factor assigned
to the j th criterion of the payoff, and Λm

Â is the whole set of admissible
weighting factors. This means that, if a vector of weights is accepted, the
players have complete information about the tradeoff among the criteria,
and therefore this leads to a scalar game. On the opposite situation, the
players may have no information about the tradeoffs. Thus, any weighting
coefficient λ ∈Λ m

Â may be considered. However, the most realistic situation
is when the players have some information on the criteria. It is well known
that any ordering can be refined when some additional information on the
criteria is available. A natural way of providing additional information is
by reducing the set of admissible weights. Some ways of giving additional
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information, already considered in the literature, are the interval criterion
weights (see Refs. 13–15) or linear relations among weights which state
interpreference criteria (Refs. 16–17).

From now on, we assume that we are given a closed polyhedron
Λ ⊆ Λ m

Â which represents the preferences on the criteria. When we consider
the modified set of admissible weights, the sense of the preference ordering
changes and only the weights in the set Λ must be considered.

Let a, b ∈ �m be two vectors, we say that:

(i) a is not worse than b according to the information set Λ (a�
Λ

∼ b)
if and only if

∃ λ∈Λ such that λ taHλ tb; (1)

(ii) a is at least as preferred as b according to the information set
Λ (a�

Λ

G
b) if an only if

λ ta¤λ tb, ∀ λ ∈Λ ; (2)

(iii) a is equivalent to b according to the information set Λ (a ≡Λ b) if
and only if

λ taGλ tb, ∀ λ ∈Λ . (3)

Example 2.1 (Continued). Let us consider that the set of admissible
weights is

ΛG{λ ∈Λ m
Â : 1�3⁄λ1⁄2�3}.

Using this information set about the weights, none of the players or coalit-
ions can disagree with either the allocation X or the allocation Y. The pay-
offs for every player or coalition are preferred according to Λ to the payoffs
that they could guarantee. In Fig. 1, we show the preference cone, the
characteristic function values, and the allocation according to Y. �

In the particular case in which the players are willing to accept a unique
vector of weights λ , the scalar game associated with λ is called the λ -
weighted game.

Definition 2.1. Let (N, û) ∈ G û and λ ∈Λ . The λ -weighted game is the
scalar game (N, ûλ ) ∈ gû, where N is the set of players whose characteristic
function is given by ûλ (S )Gλ tû(S ) for every coalition S ∈ N .

We denote by λ̄1, λ̄2, . . . , λ̄p the extreme points of the polyhedron
Λ ⊆ Λ m

Â and by ΛE the matrix whose columns are the extreme points of Λ.
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Fig. 1. Example 2.1 with ΛG{λ ∈Λ m
Â : 1�3⁄λ 1⁄2�3}.

We call Λ-component games of the vector payoff game (N, û) ∈ G û to the λ̄j -
weighted games, (N, ûλr j ) ∈ gû, jG1, 2, . . . , p. Notice that, when ΛGΛm

Â , there
are m extreme points and the Λm

Â-component games are called component
games. In this case, they are denoted by (N, ûj ), jG1, 2, . . . , m, where

ûj : N ∪ ∅ →�, ûj (S )G(û(S ))j , ∀ jG1, 2, . . . , m.

Given a polyhedron of weights Λ, we say that X is an allocation of
(N, û) ∈ G û if it verifies the efficiency property

ΛEXNGΛEû(N ).

Besides, if Λ is a nondegenerated polyhedron, the allocations are matrices
X ∈ �mBn verifying XNGû(N ). The set of allocations of the game is denoted
by I*(N, û).

Allocations verify only the efficiency property. Nevertheless, we should
impose on them (according to the classical scalar theory) individual and
collective rationality principles. The crucial point in the development of vec-
tor-valued games is the extension of the rationale from the scalar ordering
to the ordering given in (1)–(2). To this end, we must replace the complete
order ⁄ in �, for the comparison between side payments and the values of
the characteristic function, by the ordering considered in �m. This very sim-
ple idea leads us to the following reformulation of the rationality principles
and the domination through coalitions, depending on the ordering

R ∈ {�
Λ

∼ , �
Λ

G
}:
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(i) X verifies the individual rationality principle if Xi
R û({i}) for any

i ∈ N.
(ii) X verifies the collective rationality principle if XS

R û(S ) for any
S ⊆ N.

(iii) Let X, Y ∈ �mBn, and let S ∈ N be a coalition. Y dominates X
through S according to R and we will denote

Y dom
S

R

X, if YS�
Λ

AXS and û(S )R YS,

where �
Λ

A means �
Λ

G
and ≡�Λ.

These principles, when applied using the orderings given in (1)–(2), will lead
us to different sets of stable allocations in vector-valued games, as we will
see in the next sections.

3. Solution Concepts with Weak Ordering

The weakest ordering represents an attitude of compromise in the nego-
tiation given by (1). The set of all the allocations is not acceptable by the
players of a vector-valued game. An allocation is individually acceptable if
it allocates to each player not less than the worth that the player can guaran-
tee to himself. Notice that this concept depends on the meaning given to
‘‘not less’’. When the ordering is defined by (1), it leads us to the following
definition of generalized imputation.

Definition 3.1. An allocation X ∈ I*(N, û) of the game (N, û) ∈ G û is a
generalized imputation or simply an imputation if

Xi�
Λ

∼ û({i}), ∀ i ∈ N.

The set of all the imputations of the game will be denoted by I (N, û; �
Λ

∼ ).

Now, we consider within the generalized imputation set the collective
rationality principle. According to that principle, an imputation will be
acceptable if no coalition can argue against its allocated amount XS. To
this end, we use the following dominance concept.

Definition 3.2. Let X, Y ∈ �mBn, and let S ∈ N be a coalition. Y domi-
nates X through S, according to �

Λ

∼ , and we will denote

Y dom
S

�
Λ
∼

X, if YS �
Λ

AXS and YS�
Λ

∼ û(S ).
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In order to accomplish the above-mentioned rationality principles, we
should consider those imputations which are not dominated with respect to
any coalition. In doing that, no coalition has any incentive to complain
against its allocation. Therefore, in this sense, this set of imputations is
stable. The following definition states the concept of nondominated
imputations.

Definition 3.3. An imputation X ∈ I (N, û; �
Λ

∼ ) of the vector-valued
game (N, û) ∈ G û is nondominated if, for any coalition S ∈ N , there does not
exist an imputation Y ∈ I (N, û; �

Λ

∼ ) such that Y domS
�
Λ
∼

X. The set of nondomi-
nated imputations is denoted by

NDI(N, û; �
Λ

∼ )

G�X ∈ I (N, û; �
Λ

∼ ): ∃�S ∈ N , Y ∈ I (N, û; �
Λ

∼ ), Y dom
S

�
Λ
∼

X�.
In standard scalar cooperative games, the set of nondominated imputa-

tions has been considered widely; see Ref. 18 and the references therein.
Nevertheless, in vector-valued cooperative games, the concept which plays
an important role is the set of nondominated imputations by allocations, as
it will be shown through the paper.

The same rationale of the idea of dominance is used in the definition if
NDI can be strengthened looking for the dominant elements in the larger
set of all the allocations. This idea leads us to a refinement of the set of
nondominated imputations that we name the set of imputations nondomi-
nated by allocations (NDIA).

Definition 3.4. An imputation X ∈ I (N, û; �
Λ

∼ ) of the vector-valued
game (N, û) ∈ G û is nondominated by allocations if, for any coalition S ∈ N ,
there does not exist an allocation Y ∈ I*(N, û) such that Y domS

�
Λ
∼

X. This set
is given by

NDIA(N, û; �
Λ

∼ )

G{X ∈ I (N, û; �
Λ

∼ ): ∃�S ∈ N , Y ∈ I*(N, û), Y dom
S

�
Λ
∼

X}.

By their own definitions, it is clear that

NDIA(N, û; �
Λ

∼ ) ⊆ NDI(N, û; �
Λ

∼ ).

Although in general these two sets, NDIA(N, û; �
Λ

∼ ) and NDI(N, û; �
Λ

∼ ) are
different, one can prove that, under mild conditions, they do coincide.
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The following result proves that, by considering only the imputations
in the set Ir (N, û; �

Λ

∼ ) whose elements verifies

Xi�
Λ

∼ û({i}), Xi≠û({i}), ∀ i ∈ N,

the following equality holds:

NDI(N, û; �
Λ

∼ )GNDIA(N, û; �
Λ

∼ ).

Theorem 3.1. The following equality holds:

NDIA(N, û; �
Λ

∼ )∩ Ir (N, û; �
Λ

∼ )GNDI(N, û; �
Λ

∼ )∩ Ir (N, û; �
Λ

∼ ).

Proof. For every game (N, û) ∈ G û, we have

NDIA(N, û; �
Λ

∼ )∩ Ir (N, û; �
Λ

∼ ) ⊆ NDI(N, û; �
Λ

∼ )∩ Ir (N, û; �
Λ

∼ ).

Consider

X ∈ NDI(N, û; �
Λ

∼ )∩ Ir (N, û; �
Λ

∼ ),

and assume that

X ∉ NDIA(N, û; �
Λ

∼ ).

Thus,

∃ S ∈ N , Y ∈ I*(N, û) such that Y dom
S

�
Λ
∼

X,

that is,

YS�
Λ

AXS and YS�
Λ

∼ û(S ).

Therefore,

XS�
Λ

AYS�
Λ

∼ û(S ),

that is,

XS�
Λ

∼ û(S ).

Then, if AΛ* denotes the polar set of AΛ, we have that

∃ d ∈ AΛ*, ��d ��G1, ∃ (0H0 such that, ∀ (F(0, XSC(d�
Λ

∼ û(S ). (4)

As

Xi�
Λ

∼ û({i}), Xi ≡�Λ û({i}), ∀ i ∈ N,

we have that

∃ (1H0 such that XiA(d�
Λ

∼ û({i}), ∀ (F(1, ∀ i ∈ N.



JOTA: VOL. 112, NO. 2, FEBRUARY 2002342

Let

( ∈ (0, min{(0, (1}),

and let

p ∈ N \S.

Consider a matrix Y ∈ �mBn such that

YiGXiC(d��S �, ∀ i ∈ S,

YpGXpA(sd,

YiGXi, ∀ i ∈ N \ (S ∪ {p}.)

The choice of ( means that

Y ∈ Ir (N, û; �
Λ

∼ ) ⊆ I (N, û; �
Λ

∼ ).

Besides, since

YSGXSC(d,

then by (4),

YS�
Λ

∼ û(S ).

On the other hand,

YSAXSG(d�
Λ

∼ 0,

because

d ∈ AΛ*.

Therefore,

Y dom
S

�
Λ
∼

X.

But this is not possible because

X ∈ NDI(N, û; �
Λ

∼ ). �

Therefore, nondominated imputations which do not belong to
NDIA(N, û; �

Λ

∼ ) assign, to at least one of the players, a payoff that is equiv-
alent to what he can obtain by himself.

Keeping track of the development followed in the standard theory, the
next step is to impose the collective rationality to those imputations pro-
posed as good allocations. This idea was suggested first in Ref. 19 and later
formalized (for scalar games) under the name of core of the game.
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Definition 3.5. The core of the vector-valued game (N, û) ∈ G û is
defined as the set of allocations such that XS is not dominated by û(S ) for
every coalition S and is denoted by

C (N, û; �
Λ

∼ )G{X ∈ I*(N, û): XS�
Λ

∼ û(S ), ∀ S ⊂ N}.

The core above defined can be characterized alternatively by the follow-
ing theorem.

Theorem 3.2. The following equality holds:

C (N, û; �
Λ

∼ )

G{X ∈ I (N, û; �
Λ

∼ ): ∃�S ∈ N , Y ∈ I*(N, û), û(S )�
Λ

G
YS�

Λ

AXS}.

Proof. Consider

X ∈ C (N, û; �
Λ

∼ ).

Taking into account the individual coalitions,

Xi�
Λ

∼ û({i}), ∀ i ∈ N,

and then

X ∈ I (N, û; �
Λ

∼ ).

Assume that there exists

S ∈ N , Y ∈ I*(N, û), û(S )�
Λ

G
YS�

Λ

AXS.

That is to say

λ tû(S )¤λ tXS, ∀ λ ∈Λ ,

λ tû(S )Hλ tXS, ∀ λ ∈Λ H .

Then,

∃�λ ∈Λ such that λ tû(S )Fλ tXS,

which contradicts

X ∈ C (N, û; �
Λ

∼ ).

Conversely, let

X ∈ I (N, û; �
Λ

∼ ),

and assume that a coalition S does not exist nor an allocation Y verifying

û(S )�
Λ

G
YS�

Λ

AXS, S ⊆ N.
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Then,

∃�S ∈ N such that û(S )¤
Λ

XS,

and there is no coalition S ∈ N satisfying

λ tû(S )Âλ tXS, ∀ λ ∈Λ ,

λ tû(S )Hλ tXS, ∀ λ ∈Λ H.

Then,

∀ S ∈ N , ∃ λ ∈Λ such that λ tû(S )Fλ tXS

and

∃ λ ′ ∈Λ H such that (λ ′ )tû(S )⁄ (λ ′ )tXS,

and therefore,

XS�
Λ

∼ û(S ), ∀ S ⊂ N. �

A straightforward consequence of the above theorem that relates the
core and the NDIA set is stated in the following corollary.

Corollary 3.1. The following relationship holds:

NDIA(N, û; �
Λ

∼ ) ⊆ C (N, û; �
Λ

∼ ).

We have followed the same rationale as in the standard theory of coop-
erative games when we have developed our solution concepts. Nevertheless,
the behavior of the core in vector-valued cooperative games differs from the
standard core in several respects. It is well known that essential, constant-
sum games have always an empty core (see Ref. 20). Our next example
shows that the same property is not true for vector-valued games.

Example 3.1. Consider a game with three players, NG{1, 2, 3}, two
criteria, and payoff function given by

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

û(S ) �22� �34� �41� �89� �96� �10

8 � �12

10� .

This is an essential constant-sum game, but the matrix

XG�1 10 1

5 1 4�
is in the core. �
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A sufficient condition for the core of a game to be nonempty is that
there exists λ̂ in ΛH (the relative interior of Λ) such that the λ -weighted
game (N, ûλ̂ ) ∈ gû is balanced. Recall that a cooperative game is balanced if,
for every nonnegative vector (α S )S ⊂ N satisfying

∑
S

i ∈ S ⊂ N

α SG1,

we have

∑
S ⊂ N

α Sû(S )‰û(N ).

Theorem 3.3. Consider the game (N, û) ∈ G û, If (N, λ̂ tû) is balanced for
some λ̂ ∈Λ H , then C (N, û; �

Λ

∼ )≠∅ .

Proof. If there exists λ̂ ∈Λ H such that the λ -weighted game (N, λ̂ û) ∈
gû is balanced, it follows from the Bondareva–Shapley theorem that we may
find x ∈ C (N, ûλ̂ ). Consider X ∈ �mBn, where

XiG[xi�λ̂ tû(N )]û(N ).

X is an allocation of the game (N, û) ∈ G û, because

XNG ∑
n

iG1

XiG� ∑
n

iG1

xi�λ̂ tû(N )�û(N )Gû(N ).

Assume that

X ∉ C (N, û; �
Λ

∼ );

that is,

∃ S ∈ N , Y ∈ I*(N, û) such that Y domS
�
Λ
A

X.

Then,

XS�
Λ

∼ û(S ),

and therefore,

λ tXSFλ tû(S ), ∀ λ ∈Λ H ,

λ tXS⁄λ tû(S ), ∀ λ ∈Λ .

As λ̂ ∈Λ H , then

λ̂ tXSFλ̂ tû(S ),
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but

λ̂ tXSG ∑
i ∈ S

λ̂ tX i

G� ∑
i ∈ S

xi�λ̂ tû(N )�λ̂ tû(N )

GxS

¤ λ̂ tû(S )

Gûλ̂ (S ), ∀ S ∈ N ,

and this is not possible. �

The converse is not true as shown in the next example.

Example 3.2. Consider the game (N, û) ∈ G û with four players, NG

{1, 2, 3, 4}, two criteria, and payoff function given by

{1}, {2} {1, 2}, {3, 4}, {1, 2, 3}
S {1, 3}, {2, 4} {1, 4}, {2, 3} {2, 3, 4} {1, 2, 3, 4}

{3}, {4} {1, 2, 4}, {1, 3, 4}

û(S ) .�11� �22� �11� �03� �41� �33�

The allocation X verifies

XG�−1 1 2 1

2 1 −1 1� ∈ C (N, û;�
Λ

∼ ),

because

XS⁄� û (S ), ∀ S ∈ N .

However, there does not exist

wG(λ , 1Aλ ) ∈Λ 2
Â

such that the corresponding scalar weighted game is balanced. Indeed, the
characteristic function for this scalar game is given below:

{1, 2}, {3, 4}
{1}, {2}, {3}, {4}

S {1, 2, 3} {1, 4}, {2, 3} {2, 3, 4} N
{1, 3}, {2, 4}

{1, 2, 4}, {1, 3, 4}

λ tû(S ) 1 2 3A3α 1C3α 3 ,
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and if we consider the balanced collection

βG{{1}, {2}, {3}, {4}},

with balancing weights

α SG1, ∀ S ∈ β,

it follows that

∑
S ∈ β

α Sw
tû(S )G4‰� 3Gû(N ). �

4. Solution Concepts with Strong Ordering

So far, we have analyzed solution concepts for vector-valued cooperat-
ive games assuming that the players agree with the ordering (1). This
ordering implies that the coalitions admit allocations which are not worse
in all the criteria. Nevertheless, it may happen that, in some situations, the
preference structure assumed by the agents is stronger, and the coalitions
accept only allocations if they get more than the worth given by the charac-
teristic function. This assumption modifies the rationale of the decision pro-
cess under the game and, therefore, the solution concepts will be modified
accordingly.

In this section, we analyze the concepts of nondominated imputations,
nondominated imputations by allocations, and their relationships with the
core when the ordering (2) is assumed by the agents in the game.

Definition 4.1. Let Λ ⊆ Λ m
Â . An allocation X ∈ I*(N, û) of the game

(N, û) ∈ G û is a preference imputation if

Xi�
Λ

G
û({i}), ∀ i ∈ N.

The set of all preference imputations in the game (N, û) ∈ G û will be denoted
by I(N, û; �

Λ

G
).

It is worth noting that

I(N, û;�
Λ

G
) ⊆ I(N, û; �

Λ

∼ ).

This is a straightforward consequence of their definitions.

Definition 4.2. Let X, Y ∈ �mBn, and let S ∈ N be a coalition. Y domi-
nates individually X through S according to �

Λ

A, and we will denote

Y domi
S

�
Λ
A

X, if Yi�
Λ

AXi, ∀ i ∈ S and YS�
Λ

Gû(S ).
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Y dominates X through S according to �
Λ

A, and we will denote

Y dom
S

�
Λ
A

X, if YS�
Λ

AXS and YS�
Λ

Gû(S ).

Theorem 4.1. Let X be an allocation of the game (N, û) ∈ G û. The fol-
lowing statements are equivalent:

(i) ∃ Y ∈ I*(N, û) such thatY domiS
�
Λ
A

X.

(ii) ∃ Y ∈ I*(N, û) such that Y domiS
�
Λ
A

X.

(iii) XS�
Λ

Aû(S ).

Proof.

(i) ⇒ (ii). If ∃ Y ∈ I*(N, û) such that Y domiS
�
Λ
∼

X. then

Yi�
Λ

AXi, ∀ i ∈ S and YS�
Λ

G
û(S ).

Then

YS�
Λ

A
XS and YS�

Λ

A
û(S ),

that is,

Y dom
S

�
Λ
A

X.

(ii) ⇒ (iii). As XS�
Λ

AYS�
Λ

G
û(S ),

XS�
Λ

Aû(S ).

(iii) ⇒ (i). Let

dGû(S )AXS�
Λ

A0.

It is possible to construct a matrix Y ∈ �mBn with

YiGXiCd��S �, ∀ i ∈ S,

YiGXiAd��AS�, ∀ i ∉ S.

The matrix Y is a preimputation of the game because

YNGXNGû(N ).

Moreover,

Yi�
Λ

AXi, ∀ i ∈ S,

and

YSGXSCdGû(S ).
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So,

Y domi
S

�
Λ
A

X. �

It is straightforward to see that items (i) and (ii) in the thesis of this
result are also equivalent in the set of imputations. This is to say that the
dominance through a coalition S is equivalent to the dominance for all the
players in that coalition.

Once more, we use the concept of dominance through coalitions, given
in Definition 4.2, to introduce the set of nondominated preference
imputations.

Definition 4.3. A preference imputation X ∈ I (N, û; �
Λ

G
) in the game

(N, û) ∈ G û is said to be nondominated if no coalition S ∈ N can find another
imputation Y ∈ I (N, û; �

Λ

G
) such that Y domS

�
Λ
∼

X.

NDI(N, û; �
Λ

G
)

G�X ∈ I (N, û; �
Λ

G
): ∃�S ∈ N , Y ∈ I (N, û; �

Λ

G
), Y dom

S

�
Λ
A

X� .

In the preference imputation set, we may find nondominated preference
imputations using nondominated imputations of the scalar Λ-components
games.

Recall that we denote by ΛE ∈ �mBp the matrix of the extreme points of
the polyhedron of weights Λ.

Theorem 4.2. If the rows of Λ t
EX ∈ �mBp are nondominated imputa-

tions of the scalar Λ-component games of (N, û) ∈ G û, then
X ∈ NDI(N, û; �

Λ

G
).

Proof. Suppose that

X ∉ NDI(N, û; �
Λ

G
).

Then,

∃ S ∈ N , Y ∈ (N, û; �
Λ

G
) such that Y dom

S

�
Λ
A

X,

that is,

Yi�
Λ

AXi, ∀ i ∈ S and YS�
Λ

G
û(S ).
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Therefore,

λ tY iHλ tX i, ∀ i ∈ S, ∀ λ ∈Λ H,

λ tYS⁄λ tû(S ), ∀ λ ∈Λ .

As

λGΛEα , α ∈Λ p
Â , ∀ λ ∈Λ H ,

we have

α tΛ t
EYiHα tΛ t

EXi, ∀ i ∈ S, ∀ α ∈Λ p
Â ,

α tΛ t
EY

S⁄α tΛ t
Eû(S ), ∀ α ∈Λ p

Â .

Then,

Λ t
EY

i¤Λ t
EXi, ∀ i ∈ S,

Λ t
EY

S‰Λ t
Eû(S ).

Hence, for every scalar Λ-component game,

λ̄t
jY

i¤ λ̄t
jX

i, ∀ i ∈ S,

λ̄t
jY

SG(λ̄t
jY )S‰ λ̄t

jû(S ),

contradicting that λ̄t
jX are nondominated imputations in the scalar Λ-com-

ponent games (N, ûλr j). �

The converse is not always true; that is, there exist nondominated pref-
erence imputations in the game (N, û) ∈ G û apart from those obtained from
nondominated imputations of each scalar Λ-component game. The follow-
ing example shows a game with this property.

Example 4.1. Consider a game (N,û) ∈ G û, with three players, NG

{1, 2, 3}, two criteria, ΛG�2
Â , and payoff function given by

S {1}, {2}, {3} {1, 2} {1, 3}, {2, 3} {1, 2, 3}

û(S ) �11� �13� �22� �64� .

The imputation

XG�2 3 1

1 1 2�
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is nondominated. However, the allocation given to the second component
game X2G(1, 1, 2) is dominated for the coalition SG{1, 2} by

yG(3�2, 3�2, 1).

Therefore,

X2∉ NDI(N, û2). �

This example is very important. It shows that the analysis of vector-
valued games, even with the strong ordering (2), does not reduce to the
analysis of its Λ-component games. Therefore, although in some cases it
may seem that the componentwise analysis is enough, it does not extend to
all the concepts of solution.

In the preference imputation set, there may be nondominated imputa-
tions which may be dominated provided that we enlarge the set of admiss-
ible allocations. This is shown in the next example.

Example 4.2. Consider the game (N, û) ∈ G û, with three players, NG

{1, 2, 3}, two criteria, ΛG�2
Â , and payoff function given by

S {1}, {2}, {3} {1, 2} {1, 3}, {2, 3} {1, 2, 3}

û(S ) �11� �32� �22� �35� .

The imputation

XG�1 1 1

1 1 3� ∈ NDI(N, û; �
Λ

G
).

But the players in coalition SG{1, 2} can improve their payments with
respect to the first criterion through an allocation that is not an imputation.
However, the matrix

YG�1 1 1

3�2 3�2 2�
is a nondominated imputation, too. But in this case, the allocation is stabler
than the imputation X, because no coalition can improve for itself.

This example leads us to redefine the nondominated imputation set
to a smaller set of preference imputations that we call nondominated by
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allocations. This concept is analogous to the one introduced in the previous
section, except with regard to the ordering given by (2). Therefore, we pro-
ceed similarly as in Section 3.

Definition 4.4. A preference imputation X ∈ I (N, û; �
Λ

G
) in the game

(N, û) ∈ G û is nondominated by allocations if no coalition S ∈ N can find
another allocation Y such that Y domS

�
Λ
∼

X.

NDIA(N, û; �
Λ

G
)

G�X ∈ I (N, û; �
Λ

G
): ∃�S ∈ N , Y ∈ I*(N, û): Y dom

S

�
Λ
A

X� .

Notice that

NDIA(N, û; �
Λ

G
) ⊆ NDI(N, û; �

Λ

G
).

In general, these two sets are different, but they do coincide under mild
conditions such as zero monotonicity.

Proceeding similarly as in Section 3, we introduce now the concept of
core with respect to the ordering (2).

Definition 4.5. The preference core of a cooperative vector-valued
game (N, û) ∈ G û is the set of allocations X ∈ I*(N, û) such that

XS�
Λ

G
û(S ), ∀ S ⊂ N.

We will denote this set as C (N, û; �
Λ

G
).

Our first result proves that this core coincides with the set
NDIA(N, û; �

Λ

∼ ).

Theorem 4.3. The following identity holds:

C (N, û; �
Λ

G
)

G{X ∈ I (N, û; �
Λ

∼ ): ∃�S ⊆ N , Y ∈ I*(N, û), û(S )�
Λ

∼ YS�
Λ

AXS}.

Proof. Suppose that

X ∈ C (N, û; �
Λ

G
)

and

∃ S ∈ N and Y ∈ I*(N, û) such that û(S )�
Λ

AYS�AXS.
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Then, it is not possible that

XS�
Λ

G
û(S ) and X ∉ C (N, û; �

Λ

G
).

Reciprocally, suppose that

X ∈ I (N, û; �
Λ

∼ )

and

∃�S ∈ N , Y ∈ I*(N, û) such that û(S )�
Λ

∼ YS�
Λ

AXS.

If

X ∉ C (N, û; �
Λ

G
),

we have, that

∃ S ∈ N verifying û(S )�
Λ

∼ XS and û(S ) ≡�
Λ

XS.

Then, we can consider the allocation Y such that

û(S )�
Λ

∼ YS�
Λ

AXS. �

Next, we establish that a necessary and sufficient condition for the
existence of imputations in the preference core is balancedness; that is, for
every nonnegative vector (α S )S ⊂ N satisfying

∑
S

i ∈ S ⊂ N

α SG1,

we have

∑
S ⊂ N

α Sû(S )‰û(N ).

Consider the nondegenerated polyhedron Λ∈Λ m
Â , whose extreme

points are λ̄1, λ̄2, . . . , λ̄p . Let ΛE ∈ �mBp be the matrix whose columns are
the extreme points of Λ.

Theorem 4.4. A necessary and sufficient condition for C (N, û; �
Λ

G
)

being nonempty is that the p scalar weighted games
(N, ûλr j) ∈ gû, jG1, 2, . . . , p, are balanced.

Proof. If C (N, û; �
Λ

G
)≠∅ , let

X ∈ C (N, û; �
Λ

G
).

Then,

XNGû(N ) and XS�
Λ

G
û(S ), ∀ S ∈ N ;
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that is,

λ tXS¤λ tû(S ), ∀ S ∈ N , ∀ λ ∈Λ .

For the extreme points of Λ,

λ̄t
jX

S¤ λ̄t
jû(S ), ∀ S ∈ N , ∀ jG1, 2, . . . , p;

that is to say,

(λ̄t
jX )S¤ (λ̄t

jû)(S ), ∀ S ∈ N , ∀ jG1, 2, . . . , p.

As

(λ̄t
jX )NGλ̄t

jX
N

Gλ̄t
jû(N ),

it holds that

λ̄t
jX ∈ C (N, ûλr j ), ∀ jG1, 2, . . . , p,

and the games (N, ûλr j) are balanced.
Conversely, as the scalar Λ-component games are balanced, there exist

elements in each scalar weighted game core. Consider the matrix B ∈ �pxn

whose rows are imputations in the core of the corresponding Λ-component
game. It is easy to see that

BGΛ t
EX,

where X is an allocation of (N, û) ∈ G û. Assume that

X ∉ C (N, û; �
Λ

G
).

Then,

∃ S ∈ N , λ ∈Λ such that λ tXSFλ tû(S );

that is,

∃ S ∈ N , α ∈Λ p
Â such that α tΛ t

EXSFα tΛ t
Eû(S ),

and therefore,

Λ t
EXSG(Λ t

EX )S¤� Λ t
Eû(S ).

Then,

∃ j ∈ {1, 2, . . . , p}, S ∈ N such that λ̄t
jX

SFλ̄t
jû(S ),

contradicting

λ̄tX ∈ C (N, ûλr j). �
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This result states that, considering the preference imputations, the con-
cept of core reduces to the Cartesian product of the cores of the weighted
Λ-component games. Thus, this core may be empty (as soon as one of the
component games has empty core, see e.g. Example 1.1), but this cannot be
applied to the set of preference imputations nondominated by allocations.
This reason gives an important role to this set as solution concept.

Next, we are going to show that there are vector-valued games in which
the core is empty but the set of preference imputations nondominated by
allocations is nonempty.

Example 4.3. Consider the game (N, û) ∈ G û, where NG{1, 2, 3}, there
are two criteria, ΛG�2

Â , and the characteristic function is given by

S {1}, {2}, {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

û(S ) �11� �35� �44� �35� �66� .

The second component of this game is nonbalanced because, for the
balanced collection,

βG{{1, 2}, {1, 3}, {2, 3}},

with balanced coefficients

α SG1�2, ∀ S ∈ β,

it holds that

(1�2)û({1, 2})C(1�2)û({1, 3})C(1�2)û({2, 3})G(5, 7)t‰� û(N ).

Therefore, the preference core is empty. However, the matrix

XG�2 3�2 5�2

2 2 2 �
is an imputation of the game nondominated by allocations. �

Our next result shows that this core is always included in the set of
preference imputations nondominated by allocations.

Theorem 4.5. The following relationship holds:

C (N, û; �
Λ

G
) ⊆ NDIA(N, û; �

Λ

G
).
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Proof. Let X be an element in the core,

X ∈ C (N, û; �
Λ

G
).

Then,

XS�
Λ

G
û(S ), ∀ S ⊆ N and XNGû(N ).

Assume that

∃ S ∈ N , Y ∈ I*(N, û): Y dom
S

�
Λ
A

X.

Then,

XS�
Λ

A
û(S ),

contradicting

X ∈ C (N, û; �
Λ

G
).

So,

X ∈ NDIA(N, û; �
Λ

G
). �

The next example, in which ΛGΛ 2
Â , shows that the inclusion may be

strict.

Example 4.4. Consider the game (N, û) ∈ G û, with three players, NG

{1, 2, 3}, two criteria, and characteristic function defined by

S {1}, {2}, {3} {1, 2} {1, 3}, {2, 3} {1, 2, 3}

û(S ) �11� �32� �22� �54� .

The matrix

X1G�2 2 1

1 2 1�
is an imputation in the Cartesian product core of the game and then an
imputation nondominated by allocations; however, the matrix

X2G�1 3�2 5�2

3�2 3�2 1 �
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is an imputation nondominated by allocations, which is not in the Cartesian
product core, because

X{1,2}Â� û({1, 2}). �

Finally, to conclude this section we establish the relationship that exists
between the set of preference imputations nondominated by allocations and
the core defined with respect to the ordering (1). We prove that this set
coincides with the core C (N, û; �

Λ

∼ ) provided that we consider only prefer-
ence imputations.

Theorem 4.6. The following relationship holds:

NDIA(N, û; �
Λ

G
)GC (N, û; �

Λ

∼ )∩ I (N, û; �
Λ

G
)

Proof. First, consider

X ∈ I (N, û; �
Λ

G
)

such that

X ∈ C (N, û; �
Λ

∼ )G{X ∈ I*(N, û): XS�
Λ

∼ û(S ), ∀ S ⊂ N}.

Suppose that

X ∉ NDIA(N, û; �
Λ

∼ ).

Then,

∃ S ∈ N , Y ∈ I*(N, û) such that û(S )�
Λ

G
YS�

Λ

AXS.

Reciprocally, let X be in NDIA((N, û; �
Λ

G
). Then,

∃�S ∈ N such that û(S )�
Λ

AXS.

Therefore,

XS�
Λ

∼ û(S ), ∀ S ⊂ N. �

The NDIA solution concept plays a crucial role in the theory of vector-
valued games, in that it is a valid solution concept for both orderings. On
the one hand, the preference core C (N, û; �

Λ

G
) coincides with the set

NDIA(N, û; �
Λ

∼ ) with respect to the ordering (1) as stated in Theorem 4.3.
On the other hand, the set NDIA(N, û; �

Λ

G
) with respect to the ordering (2)

reduces to C (N, û; �
Λ

∼ ) on the set of preference imputations as stated in
Theorem 4.6.

A summary of the relationships that hold between the different sets
considered in the paper is shown in Fig. 2.
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Fig. 2. Relationships between the different solution concepts.

5. Conclusions

The analysis of vector-valued games depends on the ordering assumed
to compare side payments and payoffs. We have introduced two different
domination relationships. In the first one, the players agree on side pay-
ments so that they do not get less in all the components of their payoff
functions. Therefore, it represents an attitude toward compromise in the
negotiation. In the second one, players accept side payments which at least
ensure what they can guarantee by themselves. Thus, it represents an
attitude toward independent negotiation.

These two domination relationships lead to two different theories of
vector-valued games with transferable utility (TU games) whose solution
concepts are different. These two theories allow us to define the sets of
nondominated imputations by allocations. In the paper, we show that the
set of nondominated imputations by allocations with respect to a given
domination structure characterizes the core with respect to the other domi-
nation relation. This is shown in Theorems 4.3 and 4.6.

In conclusion, the sets NDIA play a crucial role as a solution concept
in vector-valued cooperative games because they can be recommended as
solution according to the attitude toward the negotiation exhibited by the
players in the game.
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17. CARRIZOSA, E., CONDE, E., FERNÁNDEZ, F. R., and PUERTO, J., Multicriteria
Analysis with Partial Information about Weighting Coefficients, European Jour-
nal of Operational Research, Vol. 82, pp. 291–301, 1995.



JOTA: VOL. 112, NO. 2, FEBRUARY 2002360

18. DRIESSEN, T. S. H., Cooperatiûe Games: Solutions and Applications, Kluwer
Academic Publishers, Dordrecht, Holland, 1988.

19. GILLIES, D. B., Solutions to General Nonzero-Sum Games, Contributions to the
Theory of Games IV, Annals of Mathematics Studies, Princeton University
Press, Princeton, New Jersey, Vol. 40, pp. 47–85, 1959.

20. OWEN, G., Game Theory, Academic Press, San Diego, California, 1995.


